
Pergamon 
J. Appl. Maths Mechs, Vol. 62, No. 2, pp. 281-288, 1998 

© 1998 Elsevier Science Ltd 
All rights reserved. Printed in Great Britain 

P l h  S0021-8928(98)00036-7 O021-8928/98/$--see front matter 

ON THE SOLUTIONS OF ELASTIC-PLASTIC 
PROBLEMS WITH CONTACT-TYPE 

BOUNDARY CONDITIONS FOR SOLIDS 
WITH LOSS-OF-STRENGTH ZONESt 

V. E. WILDEMANN 

Perm 

(Received 12 December 1996) 

A formulation of a quasi..static problem of the mechanics of elastic-plastic bodies with loss-of-strength zones and boundary 
conditions of contact type is given which enables the properties of the loading system to be taken into account. With certain 
constraints on the constitutive relations and using a condition for stability of the softening process in a local zone, theorems are 
proved on the uniqueness of the solution of the boundary-value problem and on the maximum and minimum of the functionals 
when the kinematically or statically possible and actual fields are the same. The corresponding generalized variational principles 
are given. © 1998 Elsevier Science Ltd. All rights reserved. 

1. In an arbitrary CarLesian system of coordinates, let the constitutive relations which associate increments 
of the stress tensor do and the strain tensor de under continuous loading of an element of the material 
be given in linear tensor form 

d~ O = C~j~(e, x)dem,, (1.1) 

where the parameter ~ is equal to unity during active loading, when o/fie 0. > 0, and zero when the load 
is removed. In the latter case, the behaviour of the material is governed by the constant modulus-of- 
elasticity tensor C e. We shall confine our analysis to materials which possess soft characteristics [1], for 
which 

C (e,)C = 1) ~< C(e = O, X) = C e 

It is assumed thal there is an initial stress-strain state, so that at an instant of time preceding the 
time considered there is a known non-zero stress field o(x), strain field e(x) and displacement field u(x). 
The total strains, and their increments, have elastic and plastic components 

We will assume the existence of limiting surfaces, i.e. of a loading surface in stress space and a strain 
surface in strain space. By the Mises maximum principle of the rate of dissipation [2] 

* p 
(aij -oij)de~j >~ 0 (1.2) 

where o~j are the realt values of the components of the stress tensor, corresponding to the limiting surface 
for a given value of e~ and o~. are the components of any possible stress state which is allowed by the 
given load function. It follows from this inequality that the loading and strain surfaces are non-concave, 
and the vector of the; plastic deformation increment is along the outward normal to the limiting surface. 

The strain increments are small, and thus Cauchy's relations, which connect them and the displacement 
increment vector, hold, namely 

ae ij = ± [ ( ) + ( d,, j ) [ j (1.3) 

and the equations of the medium equilibrium are satisfied (X are given volume forces) 
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dt~ij,i + DXi = 0 (1.4) 

The loading conditions of a body fl  with boundary Z = Ys + Eu are defined using boundary conditions 
of the contact type [3] in the form 

O O 

( dt~ iyn j + Rqduj ) It. s = dS i , ( du i + Qqdff yknk ) 1~,, = du i (1.5) 

This enables additional information to be provided on the stiffness characteristics Rij(u, x) and the 
compliance characteristics Qij(S, x) of the loading system [4], which satisfy the conditions 

Ve Rijeye i >t O, Qiyeje i >t O, RikQkj = 5ij (1.6) 

Here nk are the direction cosines of the vector normal to the area and 5i: is the Kronecker delta. 
Nominally, ignoring the strain or resistance of the body, the given increments of the forces and displace- 
ments on the boundary are related by the equations 

aST = Rodu~., du~. = QodS ~. (1.7) 

and from (1.6) we obtain the relation of Eqs (1.5). In the general ease this enables us to use boundary 
conditions of the same form for the entire surface. Thus for (1.3)-(1.5) we obtain the relations 

I aS?au,  = I (aood% - ax, a,,)aa + I RodujauidZ (1.8) 
Z=Z S ~ Z=Y. S 

I dS~du;d~=I(d°ode iy -dXidui )d f~+ IQodSJSi  dZ (1.9) 
~=Z~ f~ Z=Y~ u 

where dSi = dcijnj [z. 
Equations (1.8) and (1.9) are similar to the equation of virtual work [5] and are taken as the basis 

of the proof of the fundamental theorems of the mechanics of inelastic deformation of bodies with 
contact-type boundary conditions. In the case where, in addition to possible loss of strength of the 
material, the stress level falls during progressive deformations 

dcii dEii < 0 (1.10) 

we have the important stability condition 

(1.11) 

This last inequality follows from Drucker's postulate [6] applied to the deforming and loading systems 
combined. 

Theorem 1.1. Suppose the bounded surface Y. of a body f~ which contains the region Do C f~ (2 
Do) is such that the following inequalities are satisfied 

[2-£20: Cijmn(8, z=l)h,mhij  >0; ~0:  Co,,,n(e',)~=l)hnmho <0 (1.12) 

where h is an arbitrary symmetric second-rank tensor, and the set where Cijmn(e, Z = 1)h,,mhi: = 0 has 
zero measure. Then (1.11) is a sufficient condition for problem (1.1), (1.3)-(1.5) to have no more than 
one solution. 

Proof. Suppose, on the contrary, that there are two different solutions dui 0), de~ 1), dab') and dui (2), 
de~ 2), dcr(/2! In that case the fields 

also satisfy all the equations of the boundary-value problem with zero mass forces and boundary conditions 

(doijny + Rouy)IZs = O, ' ' (1.13) • " (dui + Qodo#nk) Izu = 0 
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As we have mentione, d, the boundary conditions can be reduced to the same form. In this case Eq. (1.8) 
takes the form 

[ d(~debda=- ~ Rqdu'_idui'a~ (1.14) 
[2 Z=Z  s 

The right-hand side of the last equation obviously cannot be positive. If the solution of the original 
boundary-value problem is not unique, the integral over the volume must be negative; otherwise both 
integrals are zero• 

That the integrand of the volume integral is non-negative for the region D - t'20 during active loading 
or unloading for both solutions follows from (1.12)• If just one of the solutions, the first, say, has elastic 
unloading in the given region, putting cr~ = o/j + dc~i! I), from Mises maximum principle (1.2) we 

• ( I )  . (2 ) :  . . . . . . . . .  obtam dcy# d~i) -'~ 0. Thus In this case also the volume mtegral In (1.14) is non-negatwe. Since 
the right-hand side of (1.4) is non-positive, this proves that for an elastic-plastic strengthened body 
(D.0 = 0) with boundary conditions in the form (1.5) the solution of the boundary-value problem is 
unique. 

If, according to the different solutions of the boundary-value problem at each point of the region 
f2 0, active loading takes place (X = 1), Eq. (1.14) cannot be satisfied if the condition for stable sub- 
critical deformation (1.11) holds, contradicting the initial assumption. 

However, there is another possibility, in which one of the solutions, the first, say, gives elastic unloading 
in some region f2b (_- D.0. Bearing in mind that in that case 

) _- act!?> - c . ,  a : ) '  q - tJnltl--~mll ) q ~ ""ijmn - - -  mn 

for any point of that region we will write 

Hence 

• ,' ce t./~(1)d~.(.!) _(2)j.(1) ce :]~,(1)t]~(2)p (2) (2) 
d l ~ i j d E i j  = - ~ n m - - n m ~ q  - 2 d ( ~ i j  ur•'ij - " i j m n - - m n - - - i j  + d(~i j  deiy 

d ( ~ d g . ~ j  - C / j m n ( g , X  = l)dl~nnd8 ~ _[C~mn_  e _ C,#mn(g,X = l)]dEmndSq(1) (I) _ d~3i ]_(1).~(2)p.rq] > 0  

The sign of the last inequality is determined by condition (1.12) for ~ and the directionality of the 
vectors dot °) and &.:(z)p into the loading surface and along its outward normal, respectively. 

Thus, referring to (1.14), we can write 

Z 

which contradicts condition (1.11) in this case also. This proves the theorem• 

2. We now consicler a deformed body D with boundary Y. and pick out from it a fictitious doubly- 
connected bounded region of elastic material f2' with a rigidly fixed external boundary and an internal 
surface E', which is not very different from E. At each point x ~ [2' Eqs (1.3), (1.4) and (1.1) hold with 
some constant modulus-of-elasticity tensor. We apply to the points of the surface E' forces dS7 such 
that the displaceme, nts du7 of the boundary points that they cause ensure the configurations of surfaces 
Y.' and Z to be the same. The relation between these values is given by the equations [7] 

du~ (x') = ~ Gq(x', x) d~j (x)dZ (2.1) 

where G(x', x) is Green's tensor for the region f~'. We can also write the inverse relations 

a S , ( x ' )  = l du (x)dZ (2 .2 )  
Z 

The tensor N(x', x), like Green's tensor, is uniquely defined by the elastic properties and geometry of 
the body [2'. 

We now imagine the body D to be placed inside the region D' without being deformed. Attaching 
the bodies perfectly along their common boundary, we remove the forces dST. The combined deformation 
of the two regions on the boundary E ~ [2 gives rise to forces 
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• ~ o • • aSi(x ) - dS i ( x ) -  [ Nij(x , x) duj(x)d'Z (2.3) 
y. 

and the points on the boundary between the bodies undergo displacements 

dui(x') = du~'(x') - I G/j(x', x) dSj(x)dZ (2.4) 
Iz 

If we write relation between the quantities dS~ and du~ in linear-tensor form (1.7), we can find the 
corresponding coefficients of proportionality Rij(x, u) and Qij(x, S) from (2.1) and (2.2) using (1.7). 

Consider a point x of the boundary. On the assumption that the quantities (dS~i - dSi) are independent 
of the quantities (du~- dui) at every point of the boundary apart from that point, and that the variation 
of the stiffness coefficients Ri/(x, u) in the interval between du ° and du is negligibly small, for all x ~ Y. 
Eqs (2.3) can be written in the simpler form 

dS[ (x) - dSi(x) = Rij(x, du°)du/(x) (2.5) 

After similar simplifying hypotheses, from (2.4), (2.1) and (1.7) we obtain the equations 

dud'(x)- au~(x) = Oo(x, dS°)dSj(x) (2.6) 

These, like the previous ones, are essentially the same as boundary conditions (1.5). Thus, if the internal 
boundary Z' of region f2' in the undeformed state differs from Z at each point by the corresponding 
displacement vector du°(x), taken as the nominal displacement increment for points of the surface Y., 
and the region f)' in such that, in order for the boundaries to coincide, forces applied at points of E' 
must differ from the nominal dS°(x) in sign only, then as a result of the procedure used to join ~2 to 
the fictitious region f2' on their common boundary, conditions of type (1.5) are established and f2' can 
be used as a model of the loading system. 

The fields du(x) and de(x) in dot(x), caused by the fact that the original boundaries of regions f) and 
f2' are different, satisfy Eqs (1.1), (1.3) and (1.4) under conditions (1.5). We will assume that there is 
a loss-of-strength zone D.0 and that conditions (1.11) and (1.12) hold. Fields which satisfy all the given 
equations and inequalities will be called real. 

Let dcr~ be statically possible stress increments in the region f) which satisfy the equilibrium equations 
(1.4) and the static matching conditions 

(2.7) 

but for which, according to the constitutive relations (1.1), the corresponding possible strain increments 
dc/~ cannot necessarily be expressed in terms of continuous displacements. The Cauchy relations are 
satisfied in the region f)', while there is a discrepancy between the statically possible fields and the real 
fields, due to the difference between the possible and real forces and displacements on the common 
boundary. 

Theorem 2.1. The absolute minimum of the functional 

. . o , , , 1 o o w* = J d%d ,jaa- l eO( 2dS; dS; -dS; dSi --aS; 
~ \ 2 ) 

(2.8) 

defined for all statically possible fields corresponds to the real field of stress increments. 

Proof. Consider the following equations 

[ (ao~-a%)a~#a= :(dS:-aSi)au:Z+ 
~2+D' I :(~)  

+ I (as,.'- aS,)(duT-d ,)az = I(ds;-as,)au .  (2.9) 

obtained by applying the Cauchy relations to the actual deformation field, and using the equilibrium 
equations and the Gauss--Ostrogradskii theorem. 
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We can represent the integrand on the left-hand side of (2.9) in the form 

(do:i-d(~o)dE ~ = l  ( d o ; d £ ; - d o i i d E i j ) - l  (d(~;-doi j ) (d£;-dEi j )  (2.10) 

Allowing for possible unloading, we have 

[ (doij -d(~ij)(dE 0 -deij)d..Q~ ~ Cij=,,t(~.,x = l)[d£m. -d~.mn][dEij -de i j ld~  (2.11) 
It fl 

which holds by virtue of the fact that the material possesses a soft characteristic and follows from the 
analogous inequali~1 obtained for the region ~ in the proof of Theorem 1.1. 

Then 

[(do o - do o )( ,i % - ae o )d~ = 
It, 

= I (,~rS~ - dSD[ (du~  -du;)-(du7 -au,)]dZ= IR~(du~ -auj)(du~ -au,)dX ( 2 . 1 2 )  
x x 

Returning to (2.9), from (2.10)-(2.12) and condition (1.11) we obtain 

It+it' r. 

The equality holds when the statically possible and actual fields are the same. 
According to the equation of virtual work and the conjugacy conditions (2.7) and (2.6) 

I d o ; a ~ ; m  = ~ds;(a,,;-au')az-. jO~jas;asTez 
fl' g X 

I a<roaeo~ = l a s , ( a u ; -  a = , ) a z  = [o~asjas, a'z 
It" X ~" 

Hence 

f~ y. 

1 d~oaeo~- l ( 2 a s d ~ ;  - e0as j a s , ) a~  = I as, d~o~z (2.13) 

This proves the given extremum principle. 
In the special case where conditions of rigid loading (Q/j = 0) are given on Yu, part of the surface X, 

and conditions of soft loading (R 0 = 0) on Es, another part of the surface, the statically possible fields 
must satisfy the equation 

do;n l  ` --as; 

and relation (2.13) takes the form 

± Iao;e~'da- I ~,,,,az~ ± Ia,~oa~oaa- Ias, a.,a~-- 
2 It ~ r. u 2 It r~ u 

-- ± I as, a. ,az-  L I as, a~,az 
2 r s 2 x, 

and is the same as the expression of the extremum principle obtained using traditional boundary 
conditions [8]. 

For statically permissible fields which differ infinitesimally from the actual field (do~ = do 0. + 5(do0) ), 
the functional ~ takes an extremal value, provided that it is stationary with respect to variations 6(da0) 
which satisfy the equilibrium equations. In that case the equation 
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J" a(acr~j ) , % d o  - I a(dS~)[,/.7 - OodS~ ]a~ = 0 
D Z 

expresses the modified variational principle for elastic-plastic bodies with possible loss-of-strength zones 
and boundary conditions of the contact type. 

3. The second extremum principle concerns the kinematically possible strain increments d~#., which 
are associated with the displacement increments da~ by Cauchy's relations and, on the boundary of 
regions f2 and D', satisfy the kinematic conjugacy conditions 

d'g/I,= d~ i It, (3.1) 

but for which the possible stress increments drij, corresponding to the constitutive relations, do not 
necessarily satisfy the equilibrium equations in region D. 

Theorem 3,1. The absolute maximum of the functional 

defined for all kinematically possible fields corresponds to the actual field of strain increments. 

(3.2) 

Proof. Consider the integral 

[ (dg(i-d~ij)d(Yij d o =  I(arffi-dui)dSidZ+ 
D+D' E(D) 

+ I [ (au~ '  - a-a,.) - ( e u 7  - e ~ ) l a S ; ~  = o 
~(t~') 

and the identity 

(3.3) 

2(d~ 0 - de o ) d %  =_ f~ - f2 

fl = d'rijdgij -d(~ijdeij, f2 = d'~ij(d'~i] -da i j  ) + d(~ij(d~.ij -d'~ij)  

We will determine the sign of the following quantity 

I AdO = I(f2 - f3 )  d~  f3 = Cijran(e'Z = 1)[dgnm -dgmn][dEij -dgi j ]  
D+D" D+fl" 

In regions of active loading for all kinematically possible and actual continuations of the process 
A = 0. In zones of elastic strain and unloading, both for d% and for dcro., we have 

A = [C~qnm - C/into (e, Z = l)](d ~mn - denm)(d Eij - d~ij ) ~ 0 

which is governed by the properties of the materials mentioned above. We arrive at a similar expression 
forA when dcr r produce the loading and drij produce the unloading. 

If active loading corresponds to the kinematically possible strain increment d~il, and elastic unloading 
corresponds to the actual increments deij, then 

A = [Ci~nm - Cijnm(e., ~ = 1)]dEnmeeij - 2ac~ijd ~j > 0 

The validity of a similar inequality has already been demonstrated in the proof of Theorem 1.1. 
From the equation of virtual work for the region ~ '  and condition (1.11) with d~:~i ~ deij, we obtain 

I f3 d a  = I / 3  d o +  fRij(d'ffj -auj)(d ' f f  i - d u i ) d ~  > 0 
~+f~" D ~. 

Thus we have proved that 

J [d~o(d# o -aau)+ aau(ae~j -d~u)Jdo ~ o 
~+~" 
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and therefore 

1 j (d-~ijd.~u_doijdeij)dK,z> ~ j(dEo_deo)daud ~ 
2 ~+fl' ~+fl' 

(3.4) 

According to the conjugacy conditions (3.1) and Eqs (2.5), we have 

j d ~od ~oan = I (as7 - Rod u" 3)(au~ - a ~)aX = 
fg Z 

= I (as° du° - 2as° aa, + R,/ajaa,)dr, 
Z 

and the analogous equation with oij, er and tii replaced by oi,, %. and ui. 
Returning to inequality (3.4), from (3.3) and the last relatl~ons we obtain 

J d ' ~ i j d E i j d ~ -  l (2dSTdu~. - Ri jd~jd~i)ax  >I 
E 

>I I d°ijdeij df~ - ~ ( 2 d S ° d u i  - R ~ i d u j d u i ) d ' Z  = - I  dS°aui ax  
z x 

(3.5) 

This proves the extremum principle. 
In the special case where 

= 0 .  = 0 .  = --  ¢ 

inequality (3.5) has the form 

ES 

:~- I dS, d,,,d'Z- ± I a o o , % m  = L I ds, d, , ,ax- L I dS, d,,,ax 
Zs 2 n 2 r.s 2 r.,, 

and is the same as the expression of the well-known extremum principle obtained using traditional 
boundary conditions [8]. 

For kinematically admissible fields which differ infinitesimally from the actual field (d~i.i = de~i + 
6(de, ij)), the functional if" takes an extremal value provided that it is stationary with respect to variations 
6(de, ij) which satisfy the Cauchy relations. In that case, the equation 

do o~( de o )dn - I ~( dui )t dS7 - Rodu j lax = o 
x 

expresses the second modified variational principle for elastic-plastic bodies with possible loss-of-strength 
zones and boundary conditions of the contact type. 

According to the principles thus formulated 

W'>~W~W 

where 

z \  2 z'. 

and we therefore have the conditions for obtaining the upper and lower bounds in the approximate 
solution of the boundary-value problems. 
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